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ABSTRACT 

A general understanding of the effect of longitudinal conduction on 
fluid temperatures fo r  a multistream heat exchanger is obtained from 
a plot of a characterist ic function. 
sponding sets  of data a r e  found to  be real  and distinct except fo r  one 
possible pair  of zero-double-roots fo r  the balanced flow case. This 
a s su res  four different forms  of solutions. The function suggests the 
importance of the diagonal te rms  in the exact solutions. Therefore, 
an order  of magnitude analysis is made on the basis of this function 
and the diagonal terms. A new descriptive parameter  is derived and 
the importance of flowrate can be seen. An inefficiency plot was deter- 
mined from an example analysis of a two-stream symmetric case. 
Performance equations, correction formula, and quantitative design 
charts a r e  presented. 
the ends is discussed mathematically. 

Mathematically, three corre-  
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DEFINITION O F  SYMBOLS 

. 

Symbol Definition Units 

A Heat t ransfer  a rea  f t 2 / f t  of length 

Total area subject to longitudinal 
conduction f t 2  

AC 

ank 

C Specific heat of fluids Btu/lb - O F  

Defined by equation (55) 1 / ( 1  + lK/Qn) 

C'o,  Co, Cwk, C - Integration constants 

F(U Characteristic function defined by 
equation (4) 

f(NK) [1/ 2p( 1 -p)] defined by equation (64) 

gWK1 

h Heat t ransfer  coefficient B tu/ hr-ft2-*F 

[1/ 2p(l+p)] d e f k e d  by equation (65) 

E N  - Ec, Loss  of effectiveness due 
to  the effect of longitudinal conduction 

K Conductivity of wall materials Btu/Hr-ft-OF 

Conduction heat flux a t  warm ( o r  
cold) end 

K, 7 K2 

L Length of the exchanger f t  

m Mass flow rate lbm/hr  

(KAc/ mc)cr, Modified longitudinal - 
conductivity-flowrate- ratio, dimensionless 

NK 

NTU = cr(L/2), Modified length p 
parameter ,  dimensionless 

NL 

NB KAc/ (mc),L, defined by equation (46) 

V 



DEFINITION O F  SYMBOLS (Continued) 

Symbol Definition 

Trl 

TW 

T" 

T '  

P 

q 

(1-f t g)'i2 

(1-f  t g)l/3 

Units 

Btu/hr  

Fluid temperatures,  dependent O F  

variables 

W a l l  temperature, dependent O F  

variable 

Inlet temperature a t  warm end O F  

Inlet temperature at cold end OF 

U Overall heat transfer coefficient Btu/hr- F- f t2  

WOLC The case  where the effect of 
longitudinal conduction is neglected 

WLC 

Y 

Greek Let ters  

The case where the effect of 
longitudinal conduction is included 

Independent variable in length 
direction 

Dependent variable in F ( X )  versus  X 
plot 

Q'n (hA/mc),, Asymptotic ratios 

Pn Roots fo r  the case  of WOLC 

f t  
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DEFINITION OF SYMBOLS (Concluded) 

Units Symbol Definition 

roots f o r  the case of WLC 

(T" - T'p) (mc)p/(T% - Ti) (mc)mt 
Efzct iveness  on the thermodynamics 
base for  two-stream exchanger 

e (T - T';P)/(T'I - TI ), Dimensionless 9 temp er atur e pi eld 

Subs c rip t s 

C The case of WLC 

infl Point of inflection 

k Subscripts related to number of roots 

Minimum value m 

Maximum value 

Number of streams, o r  total number of 
s t reams 

n 

The case of WOLC 

Number of two special roots 

Number of streams flowing in 
positive di r ec t ion 

Number of streams flowing in negative 
direction 

r Matr ix  rotor in regenerator 

vii 
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FOR MULTISTREXM COUNTERFLOW HEAT EXCHANGERS 

C. L. Pan, N. E. Welch andR.  R. Head 

George C. Marshall Space Flight Center 

Huntsville, Alabama 

SUMMARY 

Considerable interest  has recently been given to the design of 

However, these design conditions tend to magnify 
gas flow heat exchangers with large heat transfer areas operating a t  
low flow rates. 
the effect of longitudinal conduction. The mathematical description 
of two-stream and multistream counterflow heat exchangers, including 
longitudinal conduction in the separating walls, by the authors, and 
work of others ,  have produced exact solutions o r  approximations that 
a r e  too involved algebraically. Consequently, the relationship between 
the mathematical results and the physical phenomena could not be as 
clearly expressed as with conventional methods. 
presented in which a plot of a characteristic function is used to obtain a 
general understanding of the effect of longitudinal conduction for  both 
the two-stream and multistream cases. 

A new concept is 

The function suggests the importance of the diagonal te rms  in the 
exact solutions, Therefore, an order  of magnitude analysis is made 
on the basis of this function and the diagonal te rms .  A new descriptive 
parameter  was derived and the importance of flowrate can be seen. An 
inefficiency plot was determined from an example analysis of a two- 
s t r eam symmetr ic  case. Performance equations, correction formula, 
and quantitative design charts a r e  presented. The effect of la rge  
temperature differences on the ends is discussed mathematically. 



INTRODUCTION 

. 

, 

Kays a d  Londori [ I ]  pointed out that considerable interest  has  
recently been given to the design of gas flow heat exchangers with 
l a rge  heat traasfer areas operating a t  low flow rates. Of course, 
these design conditions tend to magnify the effect of longitudinal 
conduction; becmse  of this, the ailthors have considered the mathe- 
matical description of two-stream (Ref. 2) and multistream (Ref. 3) 
counterflow heat exchangers including longitudinal conduction in the 
separating walls. 
of previous authors such as D r .  Hahnemann [4], and Landau and 
Hlinka [ 51, have produced exact solutions o r  approximate techniques 
that a r e  too involved algebraically. Consequently, the relationship 
between the mathematical results and the physical phenomena could 
not be expressed as clearly as with the conventional methods. A 
new concept is presented in this report in which a plot of a charac- 
ter is t ic  function is utilized to obtain a general understanding of the 
effect of longitudinal conduction for  both the two-stream and multi- 
stream cases.  
presented. 

However, these developments, a s  well as those 

A simplified method based on this function is 

It is only necessary that (mc)r / (mc)m > 5 for  the periodic flow 
to approach the direct transfer type behavior. The analysis and 
physical interpretations presented will aid the reader in the 
analysis and interpretation of periodic flow regenerators for  which 
only approximate and numerical results a r e  presently available (Ref. 
6 and 7). 

UTHEMATICAL MODEL 

DIFFERENTIAL EQUATIONS 
THAT DESCRIBE THE SYSTEM 

' .  
The differential equations that describe an n-s t ream heat 

exchanger were  derived by Sze and Cimler [8]. 
infinite conductivity normal to flow for  a reversing heat exchanger. 
Application of these equations to plate and fin type heat exchangers, 
including finite conductivity in the direction of flow, is discussed 
in Reference 3 .  The mathematical description of the two-stream 

They assumed 
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exchanger is, of course,  a special case  of the general system. 
differential equations for  the multistream case, including longitudinal 
conduction in the separating walls, are  written as follows: 

The 
' 

n =  1 

The boundary conditions for  constant heat f l u x  a t  the ends of the 
separating walls and constant fluid inlet temperatures are written as 
follows : 

dTw(o) - - K ,  Pi = T; dX 
X = O  T 

dTw (L) 
= K ,  Th dX 

X = L Tqj = 

C H A M  CT ERIST IC FUNCTION 

(3) 

The following fo rm of the characteristic equation is found to  be  
significant. It is derived in Appendix A. 

n 
= KAcA 

1 

n =  1 A / ( h A )  t l / ( fmc)n 
n 

(4) 

A '  0 = 0 (5) 

The roots of equation (4) a r e  determined graphically. An example 
Figure 1 

There  are  (n +- 1) = 5 discon- 
is given for  a four-s t ream unbalanced flow heat exchanger. 
is the F ( A )  versus A plot €or this case. 
tinuous curves. 
the roots for  the WOLC case,  and the intersections of the curves with 
Y = KAcA are  the roots for the WLC case. 
(KA,) is the slope of the straight line that shifts the roots f rom Y = 
0 to Y = KAcA. 

The intersections of the curves with the A-axis a r e  

The total conductivity 

The fo rm of the solution of the se t  of differential equations 
depends on the type of roots that are obtained f rom equation (4). 

4 
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1. If all the roots a r e  real ,  the solution is written as follows: 
n 

2 .  Since the coefficients of the differential equations are all 
real ,  complex roots appear as conjugate pairs .  
roots a r e  complex numbers, the form of the solution will be 

If only one pair  of the 

T = (C1  cos X,X f C, sin XIX) exp (X,X) -k Ck exp (A,X) (7) 2 
k =  3 

3 .  If all the roots are real, but one pair  a r e  double roots, 
that is  

A , =  X, = h 

the solution i s  

If three roots a r e  equal, the solution is 

T = C, exp (AX) -t C, X exp ( h  X) t C, X2 exp (AX) 
k ( 9 )  

4. Any other combination of the following te rms  

exp (AX) ,  x exp (AX),  x2 exp (xx), . . .cos  A X ,  
(10) 

sin AX . . . may appear in the solutions. 

Although other mathematical proof can be presented, i t  is easy 
to explain the possible types of roots f rom the plot of the characteris-  
tic function. 
curves f o r  which -a 5 F(X) I CO, -a 5 F(h)  5 0 ,  0 5 F ( h )  5 -k 00, and 
each curve intersects with Y = 0 and Y = KAcX producing n t  1 real  
roots. 
triple roots, and no solutions in the form of equations (7), ( 9 ) ,  and 

If n values of un = (hA/mc), are real, there a r e  ( n t  1) 

Therefore, there will be no complex roots, double roots, o r  

6 



. .  

other combinations. 
since the central curve may pass through the origin, i. e . ,  one of the 
roots is zero.  h& =lo = 0. 
The characterist ic equation mayt therefore, have one pair  of double 
roots equal to zero,  which produces a solution of the form of equation 
(8). The simplified f o r m  that results is 

k 

But the form of equation (8) is still possible 

If A ,  = 0, then from equation (5), A &  = 0, 

MATHEMATICAL SIGNIFICANCE OF 
BALANCED F L O W  AND UNBALANCED FLOW 

The t e rm "unbalanced flow" for multistream heat exchangers is 
precisely defined as "the condition in which the sum of the time rates  
of heat capacity in the positive direction is not equal to that in the 
negative direction, I '  that is 

It follows for "balanced flow" that 

i n 2 (+ mc)n + C 
n =  1 n = i + l  

(- mc), = 0 

The central curve of the F ( A )  versus A plot passes  through the origin 
for  balanced flow and is slightly shifted for unbalanced flow. This is 
readily illustrated by substituting h = 0 into the characterist ic function 
to obtain 

Therefor e ,  

F (0) = 0 fo r  "balanced Flow" 

F (0) # 0 for  "unbalanced flow". 

7 
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Since one pair of zero-double-roots occurs in balanced flow and all 
roots are distinct for unbalanced flow, the basic fo rms  of the solutions 
for  these two conditions a r e  different. It is apparent [2] that two 
independent solutions exist . 

T W O  SPECLAL ROOTS 

It can b e  concluded f rom this discussion that 

1 .  

2. 

3 .  

4.  

for the case of balanced flow and WOLC: 

PIo = Po = 0 

for  the case of balanced flow and WLC: 

Ato  = K O  = 0 

for  the case of unbalanced flow and WOLC : 

PIo = 0 

Po f 0 

F o r  the two-stream case:  

for the case of unbalanced flow and WLC: 

XIo = 0 

lhol is smaller  than I Po I 
THREE SETS OF ONE-ONE-ONE 

CORRESPONDENT DATA 

If the two roots considered above are excluded, the other roots 
can be traced along each of the F (1) versus X curves (FIG 1). Three  
sets  of data, ( Y ~ ,  Pn ,  hn, a r e  in one-one-one correspondence with the 
following physical relations: 

. ,  



1. The asymptotic ra t ios:  a n  = ( h A / + ~ c ) ~  - 
n = 1, 2, .. . n  . 

If (ML), is used to replace (hA)n, to make On dimensionless, On is 
just the conventional 2 (NTU)n values. F rom the F ( A )  versus A plot 
it is found that - c Y ~ ( s )  are locations at F (h) becomes infinite. 

2. The roots for  WLC case: An n = 1 ,2 , .  . .n. The hn(s) a r e  
the values of h for  which F (A) intersects the l ine Y = KAcA. 

I -  

3. The roots for WOLC case: pn n = 1 ,2 , .  . .n. The &(s) 
a r e  the values of h fo r  which F (A) intersects the A axis. 
esting to note that for this case:  

It is inter-  

pl = -a &, = +a (where n is the last s t ream) 

If the flowrate and surface conductance of each s t ream a r e  given, 
these three sets of data can be calculated from the characterist ic 
function. 

THE PHYSICAL IMPORTANCE 
OF EXTREME CONDITIONS 

1. When the total conductivity in the direction of flow is 
infinite, longitudinal conduction dominates. 

An-(-an) n = 1 , 2 , .  . .n 

A, - 0 fo r  unbalanced flow 

2. When the total conductivity in the direction of flow is finite, 
both conduction and convection are important. 

3. When the conductivity in  the direction of flow is zero, 
convection heat transfer dominates. F o r  the WOLC case :  

, I .  

An--pn n =  1,2,  ... n 

An - (+a) = pn (n is the last  s t ream in this term) 

9 



GENERAL SOLUTIONS 

All of the possible roots of the characterist ic equation a r e  now 
The general solutions a r e  readily obtained for the following clear.  

cases: 

1 .  for balanced flow and WLC: 
n 

T = C' 0 t c 0 x t C cwk exp (xkx) 
W 

k =  1 

2 .  for unbalanced flow and WLC: 

n - 

3 .  f o r  balanced flow and WOLC: 

n - 1  
-7 

n - 1  P 

4. for unbalanced flow and WOLC: 

n- 1 * ,  

(23)  

I 10 



A general procedure fo r  the determination of the ( n t l )  integration 
constants, Cto,  Co, cwk, from the boundary conditions is presented 
la te r .  

A GENERAL UNDERSTANDING FROM 
A TWO-STREAM SYMMETRIC EXCHANGER 

The temperature fields obtained from the exact solutions a r e  
necessary for  the general understanding of the problem. 
the equations a r e  too lengthy for design calculations. Therefore, the 
design techniques a r e  usually based on dimensionless parameters  that 
can be used to develop more  convenient calculational procedures. 

However, 

TWO DESIGN PARAMETERS FOR THE SYMMETRIC 
TWO-STREAM EXCHANGER (h, = h,; m, = m,) 

A dimensionless parameter that includes the effect of longitudinal 
conduction is defined 'as the modified-longitudinal- conductivity-flowrate 
ratio, which is written as follows: 

The NTU number may be considered as the modified length, and 
written as follows: 

L N = N T U =  
L mc 2 

The temperature fields, the effectiveness, and the temperature 
differences can be expressed by these two parameters.  A formal 
derivation with the physical meaning for  NK will be presented la te r .  
However, their  validity can be clearly seen f rom the expressions 
presented in the following paragraphs. 

11 



APPLICATION O F  THE 
CHARACTERISTIC FUNCTION 

The characterist ic function fo r  the two-stream symmetr ic  case 
is: 

1 = KAcX 1 

t -  
t 1 

1 A / a  t 1 A - 1 t -  A 
F ( X )  = 

- 
M mc hA m c  

1 .  For the WOLC case 

According to equations (21) and (22) 

T,= C' 0 t COX 

T =  n C' t co (X - t l / a )  
0 

n =  1,  2 

After evaluating the integration constants, the same results as 
Jakob [ 9 ]  , are obtained. 

2 .  For  the WLC case,  equation (27) is used to obtain 

(2 9) X L  = t 2 NL (1 t 2/NK) 1 1 2  
- 

Using equation (17) and (18), the temperature fields a r e  found to 
be s imilar  to those of equations (32), (33) and (34) given in reference 
2 with the exception that they a re  in te rms  of NL and NK. 

12 



MATHEMATICAL EXPLANATION FOR THE 
INCREASE OF END TEMPERATURE DIFFERENCE 
FOR THE WLC CASE 

If the mathematical expressions for the mean temperature 
diiference and end temperature difference a r e  considered, an 
interesting observation can be made. The derivation of these 
expressions is given in Appendix B. 

A'mean is defined by the total heat transferred; that is, 

Q = U A L  ABmean 

If i t  is compared with the end temperature differenceAB(0) o r  
A9(L), only one term is found to be different: 

The temperature field plots in References 2 and 3 suggest that 
longitudinal conduction increases the end temperature difference. 
At low flowrate and high conductivity, a sudden change of fluid 
temperature appears a t  the exchanger ends. 
explained with equations (30) and (32); ABmean is always smaller than 
Ae(0) , because the n l u e  of tanh (PNL) is smaller than that of (PNL) , 
and 

This condition can be 

Therefore, the effect of longitudinal conduction completely 
disappears only when 

i . e . , - - A = ~  hA 
mc 2 

13 
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Physically, this implies that the total heat t ransfer  surface (o r  
the length) i s  zero,  o r  the flowrate is infinite. 

MATHEUTICAL EXPRESSION O F  EFFECTIVENESS 
AND THE RELATION BETWEEN THE WLC AND 
WOLC CASES 

The mathematical expression for  the effectiveness of the 
symmetric two- s t ream cas e: 

If equation ( 3 3 )  were true f o r  all valuesof (pNL) and it is substituted 
into equation (34 ) ,  the following equation is obtained: 

NTU 
- NL - - (35) - NL f NK N L / ~  

N L t  1 NTU t 1 
5 -  

N -  N L t N K N L / 2 t N K / 2  t 1 

Equation (34)  is reduced to the conventional form (equation (1)). 

BOUNDARY LINE BETWEEN THE 
WLC AND WOLC CASES 

The derivation given above does not mean that the conventional 
approach would not be t rue if  tanh (PNL)  # (pNL). 
explained by use of an example f rom the boundary layer theory. 
velocity in the boundary layer approaches the s t r eam velocity 
asymptotically. However, the boundary layer  is thin and is defined 
a s  the distance from the wall where the velocity differs f rom the f r ee  
s t ream velocity by 1 per  cent. 
line between the WLC and WOLC cases can be found. 
expression for this line for  the symmetric case is 

This can be 
The 

If this cri terion is adopted, a boundary 
An algebraic 

NL = 30 NK(l /p  t 1) - 1 (36)  

This equation approximately describes the values of NL and NK f o r  
which the effectiveness calculated f rom equation (34) will differ from 
that calculated from equation ( 3 5 )  by less than 1 pe r  cent. It pre-  
scribes the region f o r  which the designer may ignore the effect of 
longitudinal conduction [la]. 

14 



The 5-NTU chart  with NK as a parameter is illustrated in Figure 
2. 
f rom equation (35). 
heat exchangers with large heat transfer a r e a s  operating at low flow 
rates. 

The curve for  NK = 0 is taken from Reference 1, o r  calculated 
These revised curves a r e  useful for gas flow 

The &-%chart with NK as a parameter and the ~ - N K  chart with 
N L  as a parameter a r e  shown in more detail in Figure 3 and Figure 4. 

BOUNDARIES OF THE 
REGION OF INEFFICIENCY 

Division of equation (30) by equation (32) gives the ratio Ae,,, / 
Ae( 0 )  

The designer will p refer  to keep this ratio as la rge  as possible. 
Unfortunately, the increase of tanh ( ~ N L )  with respect to  ( ~ N L )  
approaches 1 asymptotically for  (PNL) > 2.7, that is 

and then 

Therefore, the deterioration of thermal performance becomes worse 
for  

NL (1 + ~ / N K ) ’ / ~  > 2.7 

or 

LL > 5 . 4  

The dotted line in Figure 3 and Figure 4 of t i e  e- 
indicates conditions 

qLand f- 

(39) 

qK charts 

(40) 

15 
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FIGURE 2 THE S-NL CHART FOR TWO-STREAM 
SYMMETRIC HEAT EXCHANGERS 
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FIGURE 3 THE &-NL CHART FOR TWO-STREAM 
SYMMETRIC HEAT EXCHANGERS 
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6 0.5 2.0 2.5 

FIGURE 4 THE S-NK CHART FOR TWO-STREAM 
SYMMETRIC HEAT EXCHANGERS 
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It is clear  that in this region a large increase of NK will not c a m e  a 
large decrease of the effectiveness. 

One of the boundaries of the region of inefficiency is defined as 
follows : 

In this case an abrupt drop of efficiency may occur for  high NK 
numbers. 

SIMPLIFIED PERFORMANCE EQUATIONS 

The region specified by equation (39) is not desirable. However, 
i t  inevitably occurs in  practical  problems. Fortunately, the mathe- 
matical expressions can be simplified, and the e r r o r  introduced is 
very small: 

NK/(2PNL) + 
- - 

NK/(2p) + NK/2  + NL t 1 

n ABIO) = 

NK/(2P) + NL 

= NK/(2p) t NK/2  t NL t 1 

Comparison of numerical values calculated f rom the exact 
solution of equation (34) and simplified equation (44) is as follows: 

f, exact f simplified NK NL 

1.0 
1.0 
1.0 
1.0 

10.0 
10.0 
10.0 
10.0 

2.7 
3.0 
4.0 
5.0 
2.7 
3.0 
4.0 
5.0 

.666 

.687 

.741 

.779 

.547 

.557 

.58P 

.6145 

.666 

.687 

.741 

.779 

.548 

.558 

.588 

.6145 

(43) 
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Further simplification can be obtained for  large conduction 
-effects: 

1. If NK > 200 

Where Ng = (KAc)/(mc),L NK = 2 NL NB 

2. If NK >> NL and NK >> 1 

*'mean = 1/2NL 

Ae(0)' = 1 / 2  

6 = 1 /2  

(47) 

ORDER O F  MAGNITUDE ANALYSIS 

It has been shown with the use of equation (39 ) ,  that AL = 5.4 i s  
a special value f o r  the two-stream symmetric case. 
generalize this method to unsymmetric, unbalanced flow and multi- 
s t ream cases. 

It i s  easy to 

F i rs t ,  i t  can be predicted from the F (X) versus A curve that 

IpnI > I x , I  > Ian1 

for  each of these corresponding values. 
asymptotic ratios, and 

If am i s  the smallest  of these 

Q;nL > 5.4 or (NL)m > 2.7 (48) 

an order of magnitude analysis will lead to simpler expressions. It is 
realized that fo r  the exponential function, 

exp (-1,~) > 200 exp (+AmL) < 0.005 



I .  

I ,  

. .  

The algebraic equations that result will facilitate analytical work fo r  
l a rge  and more complicated heat exchangers. Numerical results a r e  
a l so  sufficiently accurate if equation (48) is satisfied. 

FOUR-STREAM EXAMPLE 

A four-stream balanced-flow exchanger is considered as an 
example. 
data for  the WLC and WOLC cases are:  

The two special roots and the one-one-one correspondent 

Asymptotic Ratios (a,) Roots (A,) Roots ($n) 

f f 2  

- Q3 

- a4 

A', = 0 P', = 0 
- A1 - P I  = a 3  

- A 2  - P2 

1 3  $3 

A4 64 
A, = 0 $0 = o  

Applying the boundary conditions represented by equation (3) to 
equations (17) and (18) fo r  the WLC case, and if equation (48) is 
satisfied, the (n t 1) simultaneous equation fo r  the six constants: 
Cb , COD C,-C4 a r e  simplified as follows: 

0 1 1  A2 0 0 

0 0 1 2 1 

1 a21 a22  0 0 

1 0 0 a33 e13 a3 4 

0 0 0 A 3  e A$ A, e14 

L eA4L 

a44 e h3= 1 0 0 a43 e 
L 

Equations 49, 50, 51, 52, 53, 54 - above. 

Where ank = 1/(1 t Ak/a,) (55) 

21 



Solving Go f rom equations (49), (50) and (51) in t e rms  of C', and 
simultaneously f rom equations (52), (53) and (54), one readily obtains 
C(0, COY c,, c,, c3, c4. 

THE IMPORTANCE O F  THE ROLE O F  THE 
DIAGONAL TERMS - akk 

It is concluded from the F ( A )  versus A plot and equation (15), that 

which a re  the diagonal coefficients in equations (50) through (53). 
This set  of coefficients will increase without limit, and when considering 
the characteris tic function, 

It i s  found that when KAc - 0 0 ,  only one t e rm,  akk, in the left hand 
member of the equation remains significant. 
left hand member can be neglected when akk > 100. Equations (49) 
through (54) a r e  further simplified as follows: 

The other t e rms  in the 

0 0 1 3 A1 A 2  

0 0 0 - llQl 
"1 1 

1 0 a 2 2  0 0 -1IQ2 

1 0 0 a3 3 e ~ 3 ~  o (L- 1 /a3 

1 0 0 0 a 4 4  e A4L (L-lIC?' 

0 0 0 ~ ~ e ~ 3 ~  A, e A L  4 1 

1 

Equations (57), (58), (59), (60), (61) ,  and,(62) - above- 
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Numerical calculations show that the diagonal terms are the 
predominant contributors to the abrupt change of the fluid tempera- 
tu res  at the inlets. 

CORRECTION FORMULA FOR THE 
TWO-STREAM SYMMETRIC CASE 

If the method used to obtain equations (49)  through (54) is ueed I 
for  the two-stream symmetric case, the performance equations (42) I 
through (44) will be obtained. 
different physical interpretation that may further simplify the problem. 
Using 

This approach yields a somewhat 

a,= a, a p =  a, = 0 ,  cyJ = -0, A, = - A ,  A , = X  

one obtains I 

where 

It is noted that f is derived from a& = 1/(1 t Ak/Qk), but g is 
derived from a& = 1/(1 t A,/&,) for n f k. 
more  important, and g can be neglected f o r  NK > 50. 

Therefore, f is usually 

A correction formula can be based on the conventional approach 
of increasing the exchanger length to improve the effectiveness. If, 
f o r  constant NK, the loss  of effectiveness due to longitudinal conduc- 
tion could be compensated by an increase of NL, the same effective- 
ness could be obtained fo r  different lengths. Utilizing equations (35) 
and ( 6 3 ) ,  the following correction formula can be determined. 

f.or 
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. 
If NK > 50, and NL N (1 t 2/N,)’/’ > 2.7, equation (66) can be 
further simplified ?o 

AN EXAMPLE CALCULATION 
USING THE CORRECTION FORMULA 

1. It is of interest  to consider the p e r  cent increase of the 
length of a symmetr ic  exchanger that is necessary to maintain the 
same effectiveness calculated f rom the equation for  a WOLC case  

(mc) = 8 Rtu/hr°F, hA = 160 Btu/hr ft°F, 

KA, = l.O(Btu/hr°F) . f t  L = l f t  

= (hA/mc) (L/2)  = 10 > 2.7 KAc = 1.0, 
L , N  

N 

NK = (hA/mc) (KA, mc) = 2.5 

p = (1 t 2/NK)”2 = 1.34164 f = 1/(1 - p) (2p) = -1.091 

AL% = 21.67/10 - 1 = 116.7T0 

It appears to be impracticable to double the heat exchanger length in 
order to compensate for the loss  due to effect of longitudinal 
c on du c ti on. 

2 .  If the flowrate is doubled in this example, that is,? 

( m c ) =  16.0 then NL, = 5.0 > 2 . 7  

NK = 0.625 p = 2.04939 f = -0.232 g = 0.08 NL,  c = 6.408 

AL% = 2 8.16’7” 

Compensation by increasing the length appears to be more  reasonable. 
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3. If the flowrate is reduced to one-half, that is (mc) = 4 

= 20 >2 .7  NK = 10 p =  1.09545 f = -4.7819 
L , N  

N 

g =  0.218 N = 116.434 AL% = 482% 
L , C  

Compensation by increasing the length becomes more reasonable. 
Therefore, the length correction method is practical only fo r  the 
higher flowrate range. The 10 per cent correction for  this effect as 
mentioned in Reference 8 would be reasonable only fo r  some flow- 
rate higher than 22. 

THE IMPORTANT ROLE O F  FLOWRATE AND 
THE DERIVATION O F  THE CONDUCTIVITY- 
FLOWRATE-RATIO NK 

The above calculations illustrate that the effect of longitudinal 
There is a mathematical conduction is very sensitive to  flowrate. 

derivation that supports this point. Recalling the diagonal terms, 
%, which are overweighted due to the effect of longitudinal 
conduction, 

F o r  the two-stream symmetric case 

-= 1 1 i- X /a = 1 - (1+ 2/NK) 1 /2 
akk k k  

By use of the Binomial Theorem, 

- = 1 -  1 t 1 / 2 - +  2 1/2(-1/2)(2+ + ..... 3 [ NK 2 NK 
1 

1 
E 1 - (1 t l / N K )  = - - 1 - 

akk NK 
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The ref o r  e, 

Equation (68) illustrates the conclusions that have already been 
observed in this and previous papers.  

1. Flowrate has m o r e  effect than any other factor 

2 .  The new parameter  NK, which stands fo r  the modified con- 
ductivity-flowrate- ratio, will give a much better grasp of the effect 
of longitudinal conduction. 

3 .  The parameter NK is proportional to the total conductivity 
and the heat transfer coefficient and inversely proportional to the 
square of the flowrate. 

LOWER BOUNDARY OF THE INEFFICIENCY REGION 

It has been pointed out that the efficiency can be  increased by 
increasing NL. But, on the contrary, the discussion with equations 
(39 ) ,  (40), and (41) indicates that if NL is decreased below its 
critical value, the effect of longitudinal conduction will be decreased. 
Using equations ( 3 5 )  ana ( 3 6 ) ,  the loss  of the effectiveness due to the 
effect of longitudinal conduction, I,, is found. 

IC is plotted with respect to N L ,  with NK as a parameter  (FIG 5 and 6). 
The loss  of effectiveness is serious only in the middle range of NL fo r  
constant NK.  
a maximum at a definite value of NL. 

Each NK curve declines at both ends of NL and reaches 

LINES OF MINIMUM EFFICIENCY AND THE 
U P P E R  BOUNDARY OF THE INEFFICIENCY REGION 

Since f and g a r e  functions of NK only, differentiation of I, with 
respect to NL, yields the line of minimum efficiency. 

= o  -(1 -k g - f )  dI, - 1 
t - -  

dNL (1 + NL - 2f)2 (1 f NL)2 

= (I - 2f - R)/ (R - 1) L, maximum N 
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I .  

Differentiating again 

The point of inflection is obtained: 

N ~ ,  i s  = (1 - 2f - S)/(S - 1) (71) 

Of course,  at points of inflection, the curves change their direc- 
tions of curvature. The rate of increase of the effectiveness due to 
the increase of NL will gradually decline beyond these points. This 
line is considered as the upper boundary of the inefficiency region. 
At the same time, equation (41) may be used to define the lower region. 
The boundaries are indicated in Figure 5 and Figure 6. 
top view of the region which s tar ts  at NK = 0.1. 

Figure 7 is a 

A region affected by longitudinal conduction is a lso  indicated in 
Figure 7. Note that equation (36) represents approximately the 
upper limit of the region ‘at which the effectiveness differs within 
one p e r  cent f rom the ideal WOLC case. As NL(1 t 2/N,)’I2 becomes 
smaller ,  

then the effect of longitudinal conduction becomes small and can be 
neglected for 

. ‘  

NL < 0.4 

This value of NL can be used as the lower limit of the region for  
la rger  values of NK. 

A COMPARISON OF DATA WITH 
PREVIOUS WORK 

It should be emphasized again that the inefficiency region is 
defined only on the basis of the effect of longitudinal conduction. 
does not apply to the efficiency of the whole system. 
Figures 2 through 12 of Reference 1, the effectiveness decreases as 
NL decreases in the WOLC case. If the effectiveness of the system 

It 
As shown in 
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1 .  

is plotted with respect to NL with N M ~  as a parameter ,  References 6 
and 4, a maximum is reached. The effectiveness is derived from 

equation (44) as follows: 

for  (NL 2 + NMo)’/’ > 2 . 7  

The expressions fo r  maximum effectiveness and the points of 
inflection a r e  lengthy. 

The numerical results of the author’s solution are compared with 
previous methods in Figure 8. 

RESULTS AND CONCLUSIONS 

1. The roots of the characteristic equation were graphically 
located and classified into two kinds - the two special roots and the 
three sets  of one-one-one corresponding data. 

2. The asymptotic relations and the effect on longitudinal 
conduction were related to the slope of Y = KAch 

KA C -0 ,  P, 82 Bn- i 

3 .  
the central curve which passes through the origin in the balanced- 
flow case.  

All the roots were  found to be real and distinct, except fo r  

4. The set  of diagonal coefficients, akk, were found to be 
significant when longitudinal conduction was appreciable. 
diagonal coefficients mathematically produce the sudden change of 
fluid temperature a t  the inlets. 

The 

The flowrate is found to have more  effect than other factors.  
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5. A new descriptive parameter KAcM/(mc)  was surmised 

mathematically. 

6 .  A crit ical  value NL = 2.7 was determined. 

7 .  A simplified method for the general case was determined 
from the order  of magnitude analysis. 

F o r  the two-stream symmetric case: 

8 .  Closed-form algebraic expressions were determined for  
the effectiveness and the mean and end temperature differences. 

9. Length correction formulas were devised. 

10. An inefficiency region was determined mathematically. 
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